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Arnold diffusion in many weakly coupled mappings
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~Received 29 December 1997!

When standard maps are coupled together, particles diffuse along stochastic layers by the process of Arnold
diffusion. For fixed nonlinearity parameterK and fixed couplingm, the diffusion increases with the number of
maps,N, and the number of phases in each coupling term,m, where 2<m<N. For relatively largeK, asN
is increased, the diffusion rate increases asN1/2, the length of the diagonal in the action space. For smallerK
there is a cancellation of theN1/2 dependence. Asm is increased, the diffusion rate increases as the phase of
the coupling term for a particular map becomes less correlated with the phase of the map itself, but levels off
for largem. For K50.8, when the effect ofN is removed by dividing the diffusion distanceDI rms by N1/2,
curves of universal global diffusionDI rms versusm are found, formÞN and form5N, with the latter lying
somewhat below the former. For local Arnold diffusion, the increase inDI rms for a particularm depends
strongly on the stochasticity parameterK, while theK dependence is much weaker for global diffusion for
m>3. An analytic calculation of theK dependence for the two cases indicates the reason for the difference.
The analytic calculation has been compared to numerics over a range ofm values forK50.8, 0.4, and 0.3 in
giving reasonable agreement. A weak global scaling ofDI rms}K0.25 is found analytically and is qualitatively
explained by the scaling of the dominant terms in the analytic expression.@S1063-651X~98!07405-4#

PACS number~s!: 05.45.1b, 05.60.1w
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I. INTRODUCTION

In nonintegrable Hamiltonian systems of more than t
degrees of freedom, Kolmogorov-Arnold-Moser~KAM !
curves cannot isolate the stochastic layers that lie along
separatrices of system resonances. Stochastic layers lie a
an interconnected web of resonances such that initial co
tions in any part of the web can ultimately diffuse to all pa
of it. The process, first proved to exist by Arnold@1# and
now known as Arnold diffusion, has been studied in a vari
of problems.

If three resonances can be locally isolated to be of do
nant importance, then a method exists for calculating the
of diffusion along a local resonance layer, known as
three-resonance model@2# or the stochastic pump mode
@3,4#. The model has been used to analytically calculate
local diffusion rate for coupled maps@2–4#, and for coupled
standard maps in particular@5,6#, with good agreement ob
tained with numerical results for the case of two coup
maps. The three-resonance model predictsD5(DI )2/t

}e2A/e1/2
wheree is the perturbation parameter andA'1.

If many resonance layers overlap then the three-reson
model is not adequate to describe the diffusion, which can
much larger than that calculated using a three-resona
model. An upper bound on the diffusion rate has been
tained by Nekhoroshev@7# of the form D}e2A/eg

(A'1)
where, for the number of degrees of freedomL, the optimal
value ofg has been shown to beg.L21 @8,9#. If L is large
it is clear that such an exponentially small diffusion cou
only hold for very smalle, otherwise the exponential facto
would be essentially unity. It has been estimated thate,eL

;(s0
2/L)2L2

, where s0 is the rate of decrease of Fourie
coefficients of an analytic perturbation@9#. For L large this
limits e to very small values. Also, an upper bound is rela
571063-651X/98/57~5!/5325~7!/$15.00
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to the fastest local diffusion, while an average global diff
sion is controlled by the portions of the phase space wh
the diffusion is slowest.

In a model problem in which many resonances overl
for L53, Chirikov, Ford, and Vivaldi@10# numerically in-
vestigated the scaling of the diffusion withe, finding that it
agreed with the upper bound scaling fore small, while it
followed the three-resonance model,g5 1

2 , for larger e.
However, the importantL dependence was not investigate

To investigate global diffusion it is useful to employ
system that has uniform properties in a coarse-grained se
The standard map, described by the equations

I n115I n1K sin un ,

un115un1I n11 , mod 2p

where I is the action andu is the phase, has this importan
property as it is 2p periodic in both angle and action. Th
well known phase space, as shown in Fig. 1 forK50.8,
consists of regions of stochasticity~area filling trajectories!
surrounding island chains of rational frequency. The regio
of stochasticity are separated by regular motion on pha
spanning KAM curves. The largest region of stochastic
~thick dark region! we refer to as the ‘‘primary stochasti
region,’’ and the thinner regions around smaller islands
‘‘secondary stochastic regions.’’ The KAM curves consist
two types, librational motion about fixed points~closed
curves on the phase plane! and rotational motion~open
curves spanning 2p in the phaseu!. For K*0.9716 . . . the
final rotational KAM curve is destroyed, such that glob
diffusion in a coupled set of mappings is across resonan
rather than Arnold diffusion along resources.

Konishi and Kaneko@11# studied global diffusion in a se
of coupled mappings of the form
5325 © 1998 The American Physical Society
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pi~ t11!5pi~ t !1
K

2p
„sin$2p@xi 11~ t !2xi~ t !#%

2sin$2p@xi~ t !2xi 21~ t !#%…,

xi~ t11!5xi~ t !1pi~ t11!, mod 1, i 51,2, . . .N
~1a!

in which nearest neighbors are coupled, and

pi~ t11!5pi~ t !1
K

2pAN21
(
j 51

K

sin$2p@xj~ t !2xi~ t !#%,

xi~ t11!5xi~ t !1pi~ t11!, ~1b!

for which there is all-to-all global coupling. They invest
gated the diffusion for 0.2<K<1, over a range ofN values.
For nearest neighbor coupling andN.3 the diffusion coef-
ficient D fitted an exponential with the power ofe[K given
by g.0.45 and independent ofN. This is quite different
from the estimates obtained from the rigorous upper boun
and is, in fact, close tog50.5 predicted from a three
resonance model. For global coupling an exponential fo
did not fit well, but for N54, 5, and 6 they found forK
,1 thatD}Kg with g.5.

Using a general analysis similar to that employed to
tain an upper bound to the diffusion, but applied to larg
values ofe, Chirikov and Vecheslavov@12# have estimated
that the rate of global diffusion forL sufficiently large ande
not too small behaves as a power law ine, D}eh, with h
.6.5, and is independent ofL. The value ofh can be ad-
justed by a fitting parameter, which was used to fit the dat
@11# for the case of nearest neighbor coupling. However
described above, the exponential fitting, which agrees w
the three-resonance model, also fit quite well over the par
eter range.

The forms of the mapping studied by Konishi and Kane
@11# do not distinguish how many resonances are driving
diffusion, and do not distinguish the strength of the coupl
from the nonlinearity. We adopted an alternate procedur

FIG. 1. The standard map forK50.8, with a number of initial
conditions used to explore both regular and stochastic orbits.
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linking simple standard maps together through a weak c
pling term @5,6# ~see also@13#!:

I n11
1 5I n

11K1 sin un
11m sin~un

11¯1un
m!,

un11
1 5un

11I n11
1 , mod 2p,

] ~2!

I n11
N 5I n

N1KN sin un
N1m sin~un

N1¯1un
m21!,

un11
N 5un

N1I n11
N , mod 2p,

where a total ofN maps are coupled together in groups ofm,
with 2<m<N; each map is coupled to itself and the ne
m21 maps in cyclical order. Note that this system hasL
5N11 degrees of freedom~also calledN1 1

2 degrees of
freedom, since the additional freedom is the time!. We leave
the structure of the individual maps nearly unchanged
making the coupling strengthm small, and control the num
ber of interacting resonances through the number of coup
phases. The nonlinearity parametersKi , 1< i<N, can also
be varied independently of the coupling. The mapping eq
tions ~2! are volume preserving and are also reversible,
do not have a complete symplectic form unlessm5N.

In previous work@6# the mappings were numerically in
tegrated, for a large set of initial conditions chosen to be
the stochastic phase space of the individual maps, withK
50.8, and for various values ofm andN. The actionI was
allowed to range over all values, to determine the act
diffusion DI rms. The values ofK and m were chosen to be
sufficiently large that the diffusion rate could be determin
in a reasonable time~typically 221 iterations per mapping for
each initial condition!, while m was chosen sufficiently sma
so as not to greatly perturb the phase space of the individ
maps. When the effect ofN was removed by dividing the
diffusion distanceDI rms by N1/2, a universal global diffusion
DI rms vs m was found, formÞN. For m5N, for which the
mapping has a symplectic structure, a somewhat differ
DI rms vs m was found. The difference between these tw
results was tentatively interpreted, without proof, as the d
ference between mappings with and without a symple
structure. One of the objectives of the present paper is to
this interpretation by constructing mappings withmÞN but
having a symplectic structure, and compare the diffusion
that of the previously studied mappings.

The local rate of Arnold diffusion can be calculated, usi
a generalization of the three-resonance model@2,4#. This was
done in previous work@5,6# obtaining good agreement wit
numerical diffusion over a limited range ofm and K. A
formula for global diffusion was obtained, using a genera
zation of phase space arguments that had been develop
treat a simpler problem@14#. Due to the complexity of the
formula for largem, the comparisons with numerical resul
were only obtained form52 and 3, obtaining reasonabl
~but not close! agreement for the only numerical perturbatio
strength considered, that ofK50.8. In this paper we extend
these results to a wide range ofm values and to somewha
smaller K values that are still accessible, numerically. W
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57 5327ARNOLD DIFFUSION IN MANY WEAKLY COUPLED MAPPINGS
also explore the scaling of the diffusion, analytically, ove
wide range of K values to compare with other resul
@11,12#.

II. SYMPLECTIC MAPPING

A symplectic mapping can be derived from a generat
function

F̃5(
i 51

N F Ī iu i1Ki cosu i1
m

Am
cosS (

j 51

m

u$ i 1 j 21%D G ,

~3!

where $ % denote the cyclic coordinates ifi 1 j 21.N. For
example, in place of Eq.~7!, for m52 andn53, the action
transformations are

Ī 15I 11K1 sin u11
m

&
sin~u11u3!1

m

&
sin~u11u2!,

Ī 25I 21K2 sin u21
m

&
sin~u21u3!1

m

&
sin~u21u1!,

~4!

Ī 35I 31K3 sin u31
m

&
sin~u31u1!1

m

&
sin~u31u2!,

with the accompanying phase transformations as in Eq.~2!.
As in previous work, we first considerK15K2¯5KN
50.8 andm50.01. There are 128 initial conditions, in th
and all subsequent calculations. We obtain the results g
in Fig. 2, which are compared with the previous numeri
results in@6#, Fig. 11. All results are normalized by the num
ber of initial conditions and the number of mappings.

DI rms
2 ~n!5(

i 51

M

@ I i~n!2I i~0!#2/NM2,

FIG. 2. GlobalDI rmsn
vs m, normalized by dividing byN1/2, for

K50.8,m50.01, andn5221 mapping iterations. Solid squares an
solid triangles are previous results formÞN and m5N, respec-
tively. Open squares and open triangles are new results witm
ÞN andm5N, respectively. Heavy dashed curve is theory.
g

en
l

whereM is the number of initial conditions. We see that th
new results for the not fully coupled but symplectic maps
above the results for fully coupled maps and close to
results for the nonsymplectic maps. A theoretical cur
~heavy dashed line! is also shown and will be discussed
the following section.

Various explanations for the difference between the sy
plectic mapping, as in Eq.~3!, and the fully coupled case ca
be postulated. For the symplectic mapping we have norm
ized each coupling term, relative to the coupling terms of
nonsymplectic map by the square root of the number of c
pling terms. This normalization implies that the couplin
terms are independent over long time averages. The re
indicate that the normalization is approximately correct b
small correlations may still exist, accounting for the diffe
ence between the results. Another explanation is that the
some additional constraint due to the added symmetry
fully coupled systems.

In Fig. 3, the numerical results are given forK50.4 with
m50.005. A smallerm is used in order to reduce the effe
of the perturbation term on the single map topology. T
results are normalized to the value ofm in Fig. 2 by multi-
plying DI rms by (0.01/0.005), so that the two graphs can
directly compared. The results are also normalized byN1/2

but this normalization is seen to be not as good as in thK
50.8 case. Theoretical curves corresponding to this case
also shown. These results will be discussed further in
next section.

Numerical results for smaller values ofK are very hard to
obtain, requiring very long runs before the diffusion emerg
from the initial oscillations. For example, such a run forK
50.3, m50.005,N58, andm54 is shown in Fig. 4 forn
5224 iteractions. We note that it took the full 224 iterations
for the DI rms}n1/2 proportionality to be marginally estab
lished. In Fig. 5 numerical results are given for a limite
number ofm values, together with the theoretical curves,
be discussed in the next section.

FIG. 3. GlobalDI rms vs m, for K50.4, m50.005, andn5221

normalized by dividing byN1/2 and multiplying by 0.01/0.005 in
order to compare withK50.8 results. Crosses forN58; triangles,
squares, and diamonds forN56, 4, and 3, respectively. Asterisk i
for N516. Light solid line is through cases withmÞN and light
dotted line is through cases withm5N. Heavy solid and dashed
curves are theoretical~see text!.
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5328 57ALLAN J. LICHTENBERG AND ANISH M. ASWANI
We note that form.3 but m,N, DI rms is nearly inde-
pendent ofm for any K. This is consistent with the result
for the globally coupled case in@11# for which the diffusion
is nearly independent of the number of coupled mapsN. It is
also consistent with the theoretical results in@12#. However,
for the strongly nonlinear caseK50.8, there is an additiona
limitation to the diffusion which is thatDI rms cannot exceed
the value given by a purely stochastic drive. Thus if t
coupling phase is randomized on each iteration, an appr
mate limit to the normalizedDI rms is

DI rms.mn1/2,

which for m50.01 andn5221 givesDI rms514.5, just about
at the level of open squares for 4<m<7. The estimation is
not very sharp, due to the assumption that the coupling te
are independent. The values ofDI rms for K50.4 and 0.3 lie
below this limit and are more convincing as a signal that
results are nearly independent ofm.

III. ANALYTIC CALCULATIONS

A method of analytically calculating the global diffusio
was developed in the previous work@5,6#. The method in-

FIG. 4. GlobalDI rms vs n for K50.3, m50.005,N58, andm
54, andn5224. Normalization as in Fig. 3.

FIG. 5. GlobalDI rms vs m for K50.3, m50.005,N58, andn
5225 normalized by dividing byN1/2, multiplying by 0.01/0.005,
and by (221/225)1/2 to compare with otherK-value results. Solid and
dashed curves are theory.
i-

s

e

volved two stages:~1! a calculation of the local diffusion
across phase-spanning rotation orbits at a given value of
tion; and~2! a phase space averaging procedure to determ
the average rate of global diffusion for each map. We su
marize the formulas, here, without presenting a complete
cussion.

If there arem coupling phases in a single coupling term
which there arep driving phases,d5r 1s rotation and sec-
ondary stochastic phases, andl libration phases (m5p1d
1 l ), the local diffusion coefficient along any of thed ac-
tions I5(I 1 ,...,I d) can be written in the form of a modified
binomial expansion@6#

Dpd~ I !5
m2

2K jT
(
i 51

p S p
i 21D S Dt

T D p2 i S 12
Dt

T D i 21

3
1

p E
2p/2

p/2

cos2~p2 i !u8du8AMA
2 ~p112 i !, ~5!

where (Dt/T).K/2, T.2p2/K j , and Qd5vd /K j
1/2, with

vd5I 11I 21¯1I d mod 2p for 0,vd,p, and vd52p
2@(I 11I 21¯1I d)#mod 2p otherwise.AMA(k) is the peak
value of the Melnikov-Arnold~MA ! integral for k5p11
2 i stochastic drives. We see that this coincides with
usual set of MA integrals as defined in@2,4#, AMA(k)
5A2k , whereA2k is determined by the recursion relation fo
MA integrals Al 5@2Q0 /(l 21)#Al 212Al 22 , with A1
52pepQ0/2/sinhpQ0 andA252Q0A1 . In previous work@6#
the local diffusion, calculated from Eq.~5!, was compared to
numerical results for a specific value ofI . This was done by
taking all maps but one to be in their primary stochas
layers, but uncoupled from each other, but all coupled to
mapping through a single coupling term as

I n11
1 5I n

11K sin un
11m sin~un

11¯1un
m!. ~6!

Taking values ofK50.2 for all maps, andm51024 for the
single coupling term, chosen to be sufficiently small that
diffusion remained local overn5218 iterations, andI i
52.35, chosen to be in a regular region, excellent agreem
between the numerical value ofDI rms and the value calcu-
lated fromDI rms5@Dpd(I )n#1/2 was obtained~@6#, Fig. 9!, up
to m516. We have extended this comparison tom532 with
continued excellent agreement between theory and nume

For calculating global diffusion we consider identic
maps and take the coupling to the phase of the map b
considered, andm21 other phases assumed to act iden
cally over very long times. This is the ergodic assumptio
which implies that all regions of the accessible phase sp
are explored over these long times with a probability tha
proportional to the phase space areas. To apply the assu
tion to a non-steady-state global diffusion problem we u
the approximation that the more accessible portion of
phase space, which fills on the time scale required to ca
late the diffusion, is sufficiently close to the total accessi
phase space that a reasonably accurate calculation ca
made. The hypothesis of asymptotic ergodicity has b
checked for a simpler two-dimensional~2D! mapping@14#.
Following the reasoning in Ref.@5#, we assume that in a
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57 5329ARNOLD DIFFUSION IN MANY WEAKLY COUPLED MAPPINGS
coupled map the primary stochastic region~which we will
denoteP! can drive Arnold diffusion across rotational orbi
(R) and across the stochastic regions associated with
secondary resonances (S). It can also drive diffusion acros
a librational region (L), but this does not contribute to globa
diffusion because the motion averages to the location in
tion of the fixed point of a librational region. We determin
the probabilities of a particle being in the various access
regions of phase space, and the effect of the diffusion in e
region.

Before considering the probabilities of the different typ
of phase space in which diffusion is taking place, we fi
define appropriate averages over the diffusing~driven! direc-
tion. If there is only one regular phase in the coupling ter
d5r 1s51, then the average diffusion coefficientD̄p1 for
the diffusing action, sayI , is obtained by averaging the re
ciprocal of Dp1(I ) over I . Since theR and S regions are
closely intermingled in action whileDp1,R varies slowly over
these regions, and the secondary stochastic layers are g
ally thin, we approximate the reciprocal diffusion as

1

D̄p1

5
R

R1S

1

p
E

R1S

dI

Dp1,~R1S!~ I !
, ~7!

where we have eliminated theP and L regions from this
average because theDp for primary stochastic orbits is larg
and librational orbits only store particles. If there is mo
than one regular or secondary stochastic phase in the
pling term,d>2, then these phases add to give a combin
sum of actionsI d5vd , as described previously. Since a
values of action for the phases other than the diffusing ph
are possible, an average is performed over these othe
tions,

Dp2~ I !5E Dp2~ I !dI 8Y E dI 8, ~8!

whereI 8 is an integration over all of theI ’s except the dif-
fusing one, and the subscriptp2 indicates thatd5r 1s>2 in
the coupling term. As discussed above, we assume that
actions in theR andS regions contribute, while theL actions
are considered to oscillate about zero. To evaluateDp2 , we
note that two or more regular phases appear as a sum in
coupling term; hence, they can be considered as a si
regular phase in evaluating the MA integral. This has be
confirmed numerically. Performing the integral in Eq.~7!
over the allowed ranges of all actionsI 8 yields the result that
Dp2(I )5const, independent of the diffusing~driven! action
I . The final average ofDp2

21 as in Eq.~6! to yield D̄p2 is then
trivial.

Summing the various contributions, as in@6# we have

Dg~N,m!5N
R1S

12~R1L !N (
p51

m21 H D̄p2S m21
p D

3Pp@~R1S1L !m212p2Lm212p#

1D̄p1S m21
p D PpLm212pJ , ~9!
he
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where, as previously, (R1S) is the fractional volume of the
diffusing phase space,N is the number of maps in which
diffusion can independently occur,P is the fractional volume
of the phase space of the primary drive, and 12(R1L)N is
the fractional volume of the accessible phase space. FoN
large and relatively largeK, the coefficient multiplying the
summation in Dg is proportional to N, which explains
DI rms}N1/2, as found numerically forK50.8.

For m!1 the various phase space areas can be fo
analytically@4#. From the first order Hamiltonian of the stan
dard map

L>L11L25F ~2K !1/2

p2 1
K

2p2G E
0

p

~12cosu!1/2du,

~10!

which corresponds to the sum of the primary and tw
iteration islands. From second order theory the primary s
chastic layer has a phase space area given by

P5
8

p

~2p!4

K3/2 expS 2
p2

K1/2D ~11!

and for reasonably smallK (K&0.4) we can takeS.0. We
then haveR512L2P with all values normalized to the
total phase space area. These values are quite good fm
51023. In previous work, we investigated a particular e
ample, that ofK50.8 for all maps andm50.01. For this
larger value ofm the stochastic phase spaces were found
be enlarged and were determined numerically@5#. The frac-
tions of phase space in the various regions were found,
that example, to beP'0.19 primary stochastic,S'0.30 sec-
ondary stochastic,R50.11 rotational, andL50.40 libra-
tional. For our analytic comparisons with the numerical
sults of mapping iterations we use the numerical values
the special case ofK50.8 and m50.01, while for other
cases, smallerm and smallerK, we use the analytic formu
las, and modified analytic formulas, as described below.

In Fig. 2 we compare the numerical and analytic resu
for K50.8 andm50.01, as described in Sec. II. As can b
seen in the figure the numerical results lie above the the
~heavy dashed line! in the partially coupled case and a
close for the fully coupled case.

In Fig. 3 the numerical and analytic results are compa
for K50.4 andm50.005. The results are renormalized
m50.01 so that direct comparison withK50.8 results can
be made. For the analytic results, two approximations
made for the phase space areas, which were not meas
directly. The theoretical values from Eqs.~10! and ~11!,
which underestimate the areas give the lower curve~heavy
solid line!. The upper curve is obtained from the measur
values atK50.8, reduced proportionately by use of Eq
~10! and ~11! ~heavy dashed line!. The N normalization has
also begun to be less accurate. The reason for this ca
seen from the denominator factor in front of the summat
in Eq. ~9!. Expanding 12(R1L)N for small K (NP,1),
we find the leading term gives

12~R1L !N.NP
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5330 57ALLAN J. LICHTENBERG AND ANISH M. ASWANI
and thus theN scaling ofDg cancels. ForK50.4 this can-
cellation is beginning, and therefore theN normalization
leaves numerical results at lowerN somewhat above the
higherN results.N516 is used for the theory andDI rms has
been normalized byN.

In Fig. 5 the numerical and analytic results are compa
for K50.3, m50.005, andN58. The results are normalize
to m50.01 and by dividing byN1/2. SinceN58 for all m, in
the figure, theN1/2 normalization is only for approximate
comparison with the otherK values, which also have thi
normalization. The two theory curves, as described abo
are again shown.

To study the important scaling ofDI rms with K, we use
the analytic formulas, keeping in mind that we have n
proven these scalings to accurately reflect the numerica
sults to smallK values. In Fig. 6 the scaling is given withm
as a parameter. We find a weak power-law scaling of

DI rms}Kg,

with g50.25. The power law is essentially independent
the number of coupled degrees of freedom (m) as in the
other studies@11,12#. The calculations have not been e
tended toK,0.08 because subtraction of large nearly eq
numbers led to increasing errors below this value. This p
cludes investigation of the upper bound scaling as in@7–9#,
but is in the proper regime for studying the power-law sc
ing @11,12#.

To understand this weak theoretical scaling ofDI rms with
K for our system, we examine a dominant term in Eq.~8! of
the typeDp2, given by Eq.~7!. The important scaling derive
from the Melnikov-Arnold integral. We examine the avera
of the lowest order integralA2, which occurs inD12 which
has the largest variation withK,

Ā25
1

p E
0

p

4p
I

K1/2

exp@~p/2!~ I /K1/2!#

sinh~pI /K1/2!
dI, ~12!

where the integral can be taken to extend over the en
phase space. At smallI we expand sinh(pI/K1/2) for small
argument, to obtain an approximate relationship

FIG. 6. Global DI rms vs K1/2 with m as a parameter, from
theory. Diamonds, squares, triangles, and crosses are form53, 4, 6,
and 8, respectively.
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Ā2;
1

p E
0

2K1/2/p
e~p/2!~ I /K1/2! dI

14 E
2K1/2/p

p I

K1/2 e2~p/2!~ I /K1/2! dI,

which can be evaluated to obtain, approximately,Ā2

>1.1K1/2. ThusD̄12}K and if this is the dominant scaling
DI rms}D̄12

1/2 such that

DI rns}K1/2, ~13!

which is qualitatively similar to the value ofDI rms}K0.25,
found from the complete calculation. The otherDp2 terms,
with p.1, will be more weakly varying withK. Physically
we can understand this result by noting that the theoret
value ofĀ2 is mainly determined by the near-resonant valu
of the regular phases whereuu̇16 u̇2u5O@K1/2# for which
the Melnikov-Arnold integral has a maximum value which
nearly independent ofK. The fraction of the phase space fo
which this occurs is proportional toK1/2, which accounts for
the scaling in Eq.~13!.

Although we cannot obtain a large range ofK scaling,
numerically, we obtain an approximate scaling over the th
values ofK50.8, 0.4, 0.3 for which we have numerical re
sults, as shown in Fig. 7. ForN58 we obtain the scaling for
m54, DI rms}K0.8, and for m58, DI rms}K1.4. These nu-
merical values are significantly above the theoretical valu
An explanation of the higher numerical than theoretical p
portionalities is that the times required to explore the ph
space may be long compared to the numerical iteration ti
such that the ergodic assumption is not satisfied. The num
cal difference inK scaling between theN58, m54 case and
the N58, m58 case may be another manifestation of t
special properties of the fully coupled maps.

To compare our results with those discussed in the In
duction@11,12# we first note that we have separated the co
pling parameterm from the nonlinearity parameterK. These
are combined in@11,12#. Thus we obtain, theoretically
DI rms}mK1/4 or D}m2K1/2. For m5K this corresponds to
D}Kg with g52.5. For the numerics, taking an approxima

FIG. 7. GlobalDI rms vs K1/2 with m as a parameter, from nu
merical results,N58. Diamonds, squares, triangles, and crosses
for m53, 4, 6, and 8, respectively.
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average,DI rms}mK, we obtaing.4. Both of these values o
g are below the value ofg54.8 found in@11#, with the the-
oretical result significantly below either numerical result. W
note that if the numerical results are not truly global, i.
ergodic on the phase space, theK dependence can be muc
stronger, as found in the previous results for local diffus
@6#. We can also fit our scalings to the power-law scaling
the theory in@12#, since there is an adjustable parameter
that theory that in effect determines the power.

IV. CONCLUSIONS AND DISCUSSION

Arnold diffusion has been studied inN weakly coupled
standard maps in whichm phasesm<N appear in the cou-
pling term. The coupled system was sympletctic~derived
from a generating function!. The rate of diffusion in the
N-dimensional phase space was compared with previous
sults obtained for area preserving but nonsymplectic~for m
,N) coupled maps. There appears to be little difference
the diffusion rates of the symplectic and nonsymplectic s
tems. The diffusion rates for relatively largeK can be nor-
malized by dividing byN1/2 such thatN does not explicitly
appear. When this is done, the spread of the actionDI rms,
after a given number of mapping stepsn, and fixing the
mapping parameterK and the coupling parameterm, lies on
separate universal curves ofDI rms(m) for m,N and for m
5N ~see Fig. 2!. For smallerK values theN scaling cancels,
as can be explained, theoretically, from phase space a
ments.

In previous work@6# an analytic formula to predict the
in

-

s

ica
,

n
f
n

e-

n
-

u-

diffusion rate was developed, but not fully tested. The the
has now been compared to the numerical results forK50.8,
0.4, and 0.3, shown in Figs. 2, 3, and 5, respectively. B
cause the phase space areas of the various types of orbi
not well known for theK50.4 and 0.3 cases the theoretic
results are bracketed, as described in the text. The re
indicate reasonable agreement between theory and num
but the numerical results have a somewhat steeper de
dence onK than the theory.

Because the numerical results are very difficult to obt
for small K, the scaling ofDI rms with K, extended to small
K was obtained from the theory. The results, in Fig. 5, in
cate a slow power-law decrease in diffusion rate withK,
DI rms}K0.25. This dependence gives a value ofD}m2K1/2

which is much weaker than that found in other stud
@11,12#. Although the weak dependence is qualitatively u
derstood in terms of the scaling of the dominant terms in
theoretical expression, it is not clear if this behavior is g
neric, depends on special properties of the coupling term
results from the ergodic assumption which may not be sa
fied in numerical studies.
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