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When standard maps are coupled together, particles diffuse along stochastic layers by the process of Arnold
diffusion. For fixed nonlinearity parametkrand fixed couplingu, the diffusion increases with the number of
maps,N, and the number of phases in each coupling tarmwhere 2<m=<N. For relatively largeK, asN
is increased, the diffusion rate increaseNa&, the length of the diagonal in the action space. For sméller
there is a cancellation of the'/? dependence. Am is increased, the diffusion rate increases as the phase of
the coupling term for a particular map becomes less correlated with the phase of the map itself, but levels off
for largem. For K=0.8, when the effect oN is removed by dividing the diffusion distancd ;,,s by N*?2,
curves of universal global diffusioal s versusm are found, fom#N and form=N, with the latter lying
somewhat below the former. For local Arnold diffusion, the increasalip,s for a particularm depends
strongly on the stochasticity parametér while the K dependence is much weaker for global diffusion for
m=3. An analytic calculation of th& dependence for the two cases indicates the reason for the difference.
The analytic calculation has been compared to numerics over a ramgevalies fork =0.8, 0.4, and 0.3 in
giving reasonable agreement. A weak global scaling bf,<K°%?%is found analytically and is qualitatively
explained by the scaling of the dominant terms in the analytic expre§8a0663-651X98)07405-4

PACS numbd(s): 05.45+b, 05.60+w

[. INTRODUCTION to the fastest local diffusion, while an average global diffu-
. L sion is controlled by the portions of the phase space where
In nonintegrable Hamiltonian systems of more than two, y P P P

the diffusion is slowest.
degrees of freedom, Kolmogorov-Arnold-MoséKAM )

, : < In a model problem in which many resonances overlap,
curves cannot isolate the stochastic layers that lie along thg), | —3 chirikov. Ford. and Vivald{10] numerically in-

separatrices of system resonances. Stochastic layers lie alo{?Sstigated the scaling of the diffusion with finding that it

an interconnected web of resonances such that initial Condhgreed with the upper bound scaling fersmall, while it

tions in any part of the web can ultimately diffuse to all partsfg|lowed the three-resonance modet=1, for larger e.

of it. The process, first proved to exist by Arndld] and  However, the important dependence was not investigated.

now known as Arnold diffusion, has been studied in a variety To investigate global diffusion it is useful to employ a

of problems. system that has uniform properties in a coarse-grained sense.
If three resonances can be locally isolated to be of domiThe standard map, described by the equations

nant importance, then a method exists for calculating the rate

of diffusion along a local resonance layer, known as the lhr1=1,+K sinég,,
three-resonance modéR] or the stochastic pump model
[3,4]. The model has been used to analytically calculate the On+1=06+1,1, mod2r

local diffusion rate for coupled magpg-4], and for coupled

standard maps in particul&b,6], with good agreement ob- wherel is the action andl is the phase, has this important
tained with numerical results for the case of two coupledproperty as it is zr periodic in both angle and action. The
maps. The three-resonance model predifts-(Al)%/t  well known phase space, as shown in Fig. 1 Kor0.8,

we A" wheree is the perturbation parameter and- 1. consists of regions of stochasticigrea filling trajectories

If many resonance layers overlap then the three-resonang#rroundmg i.sland chains of rational frequency. The regions
stochasticity are separated by regular motion on phase-

model is not adequate to describe the diffusion, which can b

much larger than that calculated using a three—resonan%ﬁlannlng KAM curves. The largest region of stochasticity

e ick dark region we refer to as the “primary stochastic
model. An upper bound on the diffusion rate has been ObFegion,” and the thinner regions around smaller islands are

tained by Nekhoroshef77] of the form Doce <" (A~1)  wgecondary stochastic regions.” The KAM curves consist of
where, for the number of degrees of freedomthe optimal o types, librational motion about fixed pointglosed
value of y has been shown to be=L"* [8,9]. If L is large  curves on the phase planand rotational motion(open

it is clear that such an exponentially small diffusion could ¢ryves spanning 2 in the phases). ForK=0.97% . .. the
only hold for very smallg, otherwise the exponential factor final rotational KAM curve is destroyed, such that global
would be ezssentlally unity. It has been estimated &ak_  giffusion in a coupled set of mappings is across resonances
~(0'(2)/L)2L , Where g is the rate of decrease of Fourier rather than Arnold diffusion along resources.

coefficients of an analytic perturbatig@]. For L large this Konishi and Kanekd11] studied global diffusion in a set
limits e to very small values. Also, an upper bound is relatedof coupled mappings of the form
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primary  secondary rotation primary linking simple standard maps together through a weak cou-
stochastic stochastic stochastic pling term[5,6] (see alsd13)):

It =1 +KYsin 65+ u sin(@h+- -+ 6M),

1 1
~—— libration 6., =06:+1%, ., mod 27,

2

|#+1=|2‘+KN sin 0?4—# Sil"l(@,’:‘-i—---—i— Hnmfl)’

oN, ,=6N+1N, ., mod 2r,

where a total oN maps are coupled together in groupsof
with 2=<m=N; each map is coupled to itself and the next
FIG. 1. The standard map fé¢=0.8, with a number of inital m—21 maps in cyclical order. Note that this system has
conditions used to explore both regular and stochastic orbits. =N+1 degrees of freedonfalso calledN+ 3 degrees of
freedom, since the additional freedom is the tim&e leave

K the structure of the individual maps nearly unchanged by
Pit+1)=pi(t)+ 5 (SiN{2axi 1 1(t) =i (D]} making the coupling strength small, and control the num-
ber of interacting resonances through the number of coupling
=sin{27[x;(t) —x;_1(t)1}), phases. The nonlinearity parameté's 1<i<N, can also
be varied independently of the coupling. The mapping equa-
X(t+1)=x(t)+p;(t+1), mod1l, i=1,2,...N tions (2) are volume preserving and are also reversible, but

(1a) do not have a complete symplectic form unless N.
In previous work[6] the mappings were numerically in-

in which nearest neighbors are coupled, and tegrated, for a large set of initial conditions chosen to be in
the stochastic phase space of the individual maps, ith
K K =0.8, and for various values ofi andN. The actionl was
pi(t+1)=p;i(t) + ——— E sin{2#[ x;(t) —xj(t) ]}, allowed to range over all values, to determine the action
2myN-1j=1 diffusion Al ,,s. The values oK and u were chosen to be

sufficiently large that the diffusion rate could be determined
xi(t+1)=x(t)+pi(t+1), (1b)  in a reasonable timéypically 22! iterations per mapping for
each initial conditioh, while u was chosen sufficiently small
for which there is all-to-all global coupling. They investi- so as not to greatly perturb the phase space of the individual
gated the diffusion for 02K=1, over a range ol values. maps. When the effect di was removed by dividing the
For nearest neighbor coupling ahti>3 the diffusion coef-  diffusion distance\ I s by N*2, a universal global diffusion
ficient D fitted an exponential with the power e=K given Al s vs m was found, form# N. For m=N, for which the
by y=0.45 and independent df. This is quite different mapping has a symplectic structure, a somewhat different
from the estimates obtained from the rigorous upper bounds\!,,s vs m was found. The difference between these two
and is, in fact, close toy=0.5 predicted from a three- results was tentatively interpreted, without proof, as the dif-
resonance model. For global coupling an exponential fornference between mappings with and without a symplectic
did not fit well, but forN=4, 5, and 6 they found foK structure. One of the objectives of the present paper is to test
<1 thatDoK? with y=5. this interpretation by constructing mappings witl#* N but
Using a general analysis similar to that employed to ob-having a symplectic structure, and compare the diffusion to
tain an upper bound to the diffusion, but applied to largerthat of the previously studied mappings.
values ofe, Chirikov and Vecheslavoy12] have estimated The local rate of Arnold diffusion can be calculated, using
that the rate of global diffusion fdr sufficiently large ance  a generalization of the three-resonance m¢2d]. This was
not too small behaves as a power lawednDxe”, with »  done in previous work5,6] obtaining good agreement with
=6.5, and is independent &f. The value of can be ad- numerical diffusion over a limited range oh and K. A
justed by a fitting parameter, which was used to fit the data ifiormula for global diffusion was obtained, using a generali-
[11] for the case of nearest neighbor coupling. However, agation of phase space arguments that had been developed to
described above, the exponential fitting, which agrees witlireat a simpler problem14]. Due to the complexity of the
the three-resonance model, also fit quite well over the paranformula for largem, the comparisons with numerical results
eter range. were only obtained fom=2 and 3, obtaining reasonable
The forms of the mapping studied by Konishi and Kaneko(but not clos¢ agreement for the only numerical perturbation
[11] do not distinguish how many resonances are driving thestrength considered, that &= 0.8. In this paper we extend
diffusion, and do not distinguish the strength of the couplingthese results to a wide range wf values and to somewhat
from the nonlinearity. We adopted an alternate procedure afmallerK values that are still accessible, numerically. We
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FIG. 2. GlobalAl g vsm, normalized by dividing b2, for
K=0.8, «=0.01, anch= 22! mapping iterations. Solid squares and ~ FIG. 3. GlobalAl s vs m, for K=0.4, x=0.005, anch=2?!
solid triangles are previous results for£N and m=N, respec- normalized by dividing byN*? and multiplying by 0.01/0.005 in
tively. Open squares and open triangles are new results mith Order to compare witK=0.8 results. Crosses fd¢=38; triangles,

#N andm=N, respectively. Heavy dashed curve is theory. squares, and diamonds =6, 4, and 3, respectively. Asterisk is
for N=16. Light solid line is through cases with#N and light

dotted line is through cases with=N. Heavy solid and dashed

also explore the scaling of the diffusion, analytically, over a '
curves are theoreticébee text

wide range ofK values to compare with other results
[11,17.
whereM is the number of initial conditions. We see that the
Il. SYMPLECTIC MAPPING new results for the not fully coupled but symplectic maps lie
above the results for fully coupled maps and close to the
A symplectic mapping can be derived from a generatingesults for the nonsymplectic maps. A theoretical curve
function (heavy dashed lineis also shown and will be discussed in
the following section.
o Various explanations for the difference between the sym-
121 Ofi+i-1y] | plectic mapping, as in E@3), and the fully coupled case can
3) be postulated. For the symplectic mapping we have normal-
ized each coupling term, relative to the coupling terms of the
nonsymplectic map by the square root of the number of cou-
pling terms. This normalization implies that the coupling
terms are independent over long time averages. The results
indicate that the normalization is approximately correct but
small correlations may still exist, accounting for the differ-
1,=1,+K, sin 6+ Ll Sin( 6, + 63) + Ll sin(0,+ 6,), ence between the results. Another explanation is that there is
some additional constraint due to the added symmetry of
fully coupled systems.
o In Fig. 3, the numerical results are given #r=0.4 with
I,=1,+K, sin ,+ L sin( ,+ 63) + Ll sin( 6,+ 6,), 1=0.005. A smalleru is used in order to reduce the effect
V2 V2 of the perturbation term on the single map topology. The
(4) results are normalized to the value @fin Fig. 2 by multi-
plying Al s by (0.01/0.005), so that the two graphs can be
— ) wo mo directly compared. The results are also normalized\B{
l3=13+Kjz sin 3+ 5 Sin(f3+ 61) + — sin(63+ 6,), but this normalization is seen to be not as good as inkthe
2 v2 : . )
=0.8 case. Theoretical curves corresponding to this case are
. . . . also shown. These results will be discussed further in the
with the accompanying phase transformations as in(2q. next section
As in previous work, we first consideK;=K, =Ky Numerical results for smaller values kifare very hard to

=0.8 andu=0.01. There are 128 initial conditions, in this . o PP
and all subsequent calculations. We obtain the results giveObtam’ requiring very long runs before the diffusion emerges

in Fig. 2, which are compared with the previous numericalﬂom the initial oscillations. For example, such a run for

: . . ~=0.3, u=0.005,N=8, andm=4 is shown in Fig. 4 fom
results in[6], Fig. 11. All results are normalized by the num- _ o240 o ctions, We note that it took the fulPiterations
ber of initial conditions and the number of mappings.

for the Al,,n*? proportionality to be marginally estab-
M lished. In Fig. 5 numerical results are given for a limited

A|r2ms(n):2 [1.(n)—1,(0)]2/NM?, num_ber ofm vglues, together ywth the theoretical curves, to
i=1 be discussed in the next section.

E=2 f9i+Ki cos&ﬁico

1 Vm

N
=
where{} denote the cyclic coordinatesiif-j—1>N. For

example, in place of Eq7), for m=2 andn=23, the action
transformations are
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FIG. 4. GlobalAl, s vsn for K=0.3, »=0.005,N=8, andm
=4, andn=2%4 Normalization as in Fig. 3.

We note that foom>3 but m<N, Al is nearly inde-
pendent ofm for any K. This is consistent with the results
for the globally coupled case ii1] for which the diffusion
is nearly independent of the number of coupled mdp# is
also consistent with the theoretical resultg 12]. However,
for the strongly nonlinear cas€=0.8, there is an additional
limitation to the diffusion which is thaAl s cannot exceed

the value given by a purely stochastic drive. Thus if the
coupling phase is randomized on each iteration, an approxi-

mate limit to the normalizedl . is

Alims=pun v

which for ©=0.01 andn=22! givesAl = 14.5, just about
at the level of open squares fordn<7. The estimation is

volved two stages(1) a calculation of the local diffusion
across phase-spanning rotation orbits at a given value of ac-
tion; and(2) a phase space averaging procedure to determine
the average rate of global diffusion for each map. We sum-
marize the formulas, here, without presenting a complete dis-
cussion.

If there arem coupling phases in a single coupling term of
which there are driving phasesd=r + s rotation and sec-
ondary stochastic phases, ahdibration phasesra=p+d
+1), the local diffusion coefficient along any of tte ac-
tionsl=(l4,...,l4) can be written in the form of a modified
binomial expansiof6]

MZ p p At p—i At i—1
Dpd(')zszTizl(i—l)<?> (1_?)

1 w2 X
X— cogP g de' A2 a(p+1—i), (5)
— /2

where At/T)=K/2, T=27/K;, and Qy=wq/K ?, with
wg=l1+1+--+13 mod 27 for O<wy<w, and wy=2
—[(ly+15+---+14)]mod 27 otherwise A4 (K) is the peak
value of the Melnikov-Arnold(MA) integral fork=p+1

—i stochastic drives. We see that this coincides with the
usual set of MA integrals as defined i2,4], Apya(k)

= A, WwhereA,, is determined by the recursion relation for
MA integrals A, =[2Qy/(/—1)]A,_1—A,_,, with A;
=2m7e™0%/sinh 7Qy, andA,=2QA; . In previous work 6]

the local diffusion, calculated from E¢G), was compared to
numerical results for a specific value lof This was done by
taking all maps but one to be in their primary stochastic

not very sharp, due to the assumption that the coupling termiaiyers, but uncoupled from each other, but all coupled to one

are independent. The values &f ., for K=0.4 and 0.3 lie

mapping through a single coupling term as

below this limit and are more convincing as a signal that the

results are nearly independent raf

Ill. ANALYTIC CALCULATIONS

A method of analytically calculating the global diffusion
was developed in the previous wofk,6]. The method in-

100

Normalized A l;pg
=

m

FIG. 5. GlobalAl, s vs m for K=0.3, x=0.005,N=8, andn
=22% normalized by dividing byN*2, multiplying by 0.01/0.005,
and by (2%2%%)2 to compare with otheK-value results. Solid and
dashed curves are theory.

11 =1}4K sin 62+ u sin(6>+---+ o). (6)

n+1—

Taking values oK =0.2 for all maps, angh=10* for the
single coupling term, chosen to be sufficiently small that the
diffusion remained local ovem=2!® iterations, andl;
=2.35, chosen to be in a regular region, excellent agreement
between the numerical value afl s and the value calcu-
lated from\ I s=[ D pa(1) ]2 was obtained[6], Fig. 9), up
to m=16. We have extended this comparisomte 32 with
continued excellent agreement between theory and numerics.
For calculating global diffusion we consider identical
maps and take the coupling to the phase of the map being
considered, anan—1 other phases assumed to act identi-
cally over very long times. This is the ergodic assumption,
which implies that all regions of the accessible phase space
are explored over these long times with a probability that is
proportional to the phase space areas. To apply the assump-
tion to a non-steady-state global diffusion problem we use
the approximation that the more accessible portion of the
phase space, which fills on the time scale required to calcu-
late the diffusion, is sufficiently close to the total accessible
phase space that a reasonably accurate calculation can be
made. The hypothesis of asymptotic ergodicity has been
checked for a simpler two-dimension@D) mapping[14].
Following the reasoning in Ref5], we assume that in a
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coupled map the primary stochastic regigvhich we will  where, as previously, R+ S) is the fractional volume of the

denoteP) can drive Arnold diffusion across rotational orbits diffusing phase space\ is the number of maps in which

(R) and across the stochastic regions associated with thaiffusion can independently occu®, is the fractional volume

secondary resonanceS)( It can also drive diffusion across of the phase space of the primary drive, and(R+L)N is

a librational region ), but this does not contribute to global the fractional volume of the accessible phase space N-or

diffusion because the motion averages to the location in adarge and relatively larg&, the coefficient multiplying the

tion of the fixed point of a librational region. We determine summation inD, is proportional toN, which explains

the probabilities of a particle being in the various accessible| N2 as found numerically foK=0.8.

regions of phase space, and the effect of the diffusion in each For u<1 the various phase space areas can be found

region. analytically[4]. From the first order Hamiltonian of the stan-
Before considering the probabilities of the different typesdard map

of phase space in which diffusion is taking place, we first

define appropriate averages over the diffusitigven) direc- (2K)¥2 K -

tion. If there is only one regular phase in the coupling term,  L=L,+ L2=[—2+ F“’ (1—cos 0)Yd9,

d=r+s=1, then the average diffusion coefficieDt,, for m mlJo

the diffusing action, say, is obtained by averaging the re-

ciprocal of Dp;(1) overl. Since theR and S regions are ] .

closely intermingled in action whilB ,; g varies slowly over ~Which corresponds to the sum of the primary and two-

these regions, and the secondary stochastic layers are gentgration islands. From second order theory the primary sto-

(10

ally thin, we approximate the reciprocal diffusion as chastic layer has a phase space area given by
4 2
1 R 1 di _8(2m) 7

Dpi R+S7 JRes Dpyres (1)’

where we have eliminated the and L regions from this and for reasonably Smaﬂ.(KSOA) we can tak§:o' We
then haveR=1—-L—P with all values normalized to the

average because tiik, for primary stochastic orbits is large )

and librational orbits only store particles. If there is moremt""l_p3has'e space area. These values are quite good for
than one regular or secondary stochastic phase in the cog=10 - In previous work, we investigated a particular ex-
pling term,d=2, then these phases add to give a combine mple, that ofK=0.8 for all maps andu=0.01. For this
sum of actionsl 4= wy, as described previously. Since all arger value ofu the stochastic phase spaces were found to

values of action for the phases other than the diffusing phasge enlarged and were determined numericgily The frac-
Qh(_)ns of phase space in the various regions were found, for
t

fi\(r)ensry)ossmle, an average is performed over these other a at example. to b®~0.19 primary stochasti§~0.30 sec-
ondary stochasticR=0.11 rotational, and_=0.40 libra-
tional. For our analytic comparisons with the numerical re-
Dpz(l):f Dpa(1dl ,/ f di’, (8)  sults of mapping iterations we use the numerical values for
the special case oK=0.8 and w=0.01, while for other
cases, smaller and smalleK, we use the analytic formu-
wherel’ is an integration over all of thé's except the dif- las, and modified analytic formulas, as described below.
fusing one, and the subscrip® indicates thatl=r +s=2 in In Fig. 2 we compare the numerical and analytic results
the coupling term. As discussed above, we assume that onfgr K=0.8 andu=0.01, as described in Sec. Il. As can be
actions in theR andS regions contribute, while the actions  seen in the figure the numerical results lie above the theory
are considered to oscillate about zero. To evaligig, we  (heavy dashed linein the partially coupled case and are
note that two or more regular phases appear as a sum in tletose for the fully coupled case.
coupling term; hence, they can be considered as a single In Fig. 3 the numerical and analytic results are compared
regular phase in evaluating the MA integral. This has beerior K=0.4 andx=0.005. The results are renormalized to
confirmed numerically. Performing the integral in EQ) p#=0.01 so that direct comparison with=0.8 results can
over the allowed ranges of all actiohsyields the result that be made. For the analytic results, two approximations are
Dpo(l)=const, independent of the diffusiridriven) action  made for the phase space areas, which were not measured
|. The final average db ; as in Eq.(6) to yield D, is then  directly. The theoretical values from Eq&l0) and (11),
trivial. which underestimate the areas give the lower cuheavy
Summing the various contributions, as[#] we have solid ling). The upper curve is obtained from the measured
values atk=0.8, reduced proportionately by use of Egs.
m-1 (10) and(11) (heavy dashed line The N normalization has
— [(m—1 :
> {DpZ( ) also begun to be less accurate. The reason for this can be
p=1 p seen from the denominator factor in front of the summation
m—1— m—1— in Eq. (9). Expanding + (R+L)N for smallK (NP<1),
XPP[(R+S+L) oL "] we find the leading term gives

+S

R
Dg(N,m):N m

— (m—1 -
+Dp1( p )ppL p], 9 1—(R+L)N2NP



5330 ALLAN J. LICHTENBERG AND ANISH M. ASWANI 57

100 100
3 3 ¢
E ./././*/,4’—*—’_"“' E -
2 2 y
W .
1 1
0.1 1 0.1 1
KI/Z K1I2
FIG. 6. Global Al vs K¥2 with m as a parameter, from FIG. 7. GlobalAl e vs K¥? with m as a parameter, from nu-
theory. Diamonds, squares, triangles, and crosses ame<f@®; 4, 6,  merical resultsN= 8. Diamonds, squares, triangles, and crosses are
and 8, respectively. for m=3, 4, 6, and 8, respectively.
and thus theN scaling of D, cancels. FoK=0.4 this can- — 1 (oK, 1
7 S o A~ (712)(11KM2) 4
cellation is beginning, and therefore tié normalization 7 s €
leaves numerical results at lowd& somewhat above the
higherN results.N=16 is used for the theory amill ., has w I 1o
. =(ml2)(11KH2) 4
been normalized biN. win € ;
2kM2 7 K

In Fig. 5 the numerical and analytic results are compared

for K=0.3, ©=0.005, and\N=8. The results are normalized . . . —
to ©=0.01 and by dividing byN*/2. SinceN=8 for all m, in which can be evaluated to obtain, approximately;

the figure, theN¥'2 normalization is only for approximate =1.1KY2 ThusD,,*K and if this is the dominant scaling,

comparison with the otheK values, which also have this Alms<D15 such that

normalization. The two theory curves, as described above,

are again shown. Al K2, (13
To study the important scaling &l ,,,s with K, we use

the analytic formulas, keeping in mind that we have notwhich is qualitatively similar to the value ofl s>

proven these scalings to accurately reflect the numerical réound from the complete calculation. The otl2g, terms,

sults to smalK values. In Fig. 6 the scaling is given with ~ with p>1, will be more weakly varying witfK. Physically

0.25
K 1

as a parameter. We find a weak power-law scaling of we can understand this result by noting that the theoretical
value ofA; is mainly determined by the near-resonant values
Al K, of the regular phases wheté, = 6,| =0[K'?] for which

the Melnikov-Arnold integral has a maximum value which is

with y=0.25. The power law is essentially independent ofn€arly independent df. The fraction of the phase space for
the number of coupled degrees of freedom) (as in the Which this occurs is proportional 162, which accounts for
other studies11,12. The calculations have not been ex- the scaling in Eq(13). _ _
tended tok <0.08 because subtraction of large nearly equal Although we cannot obtain a large range Kfscaling,
numbers led to increasing errors below this value. This prefumerically, we obtain an approximate scaling over the three
cludes investigation of the upper bound scaling af7ing),  Values ofK=0.8, 0.4, 0.3 for which we have numerical re-
but is in the proper regime for studying the power-law scal-sults, as shown in Fig. 7. F&¢=8 we obtain the scaling for
ing [11,17. m=4, Al K8 and form=8, Al,,>K*% These nu-

To understand this weak theoretical scaling\df,, with merical values are significantly above the theoretical values.
K for our system, we examine a dominant term in B).of  An explanation of the higher numerical than theoretical pro-
the typeD ,,,, given by Eq(7). The important scaling derives portionalities is that the times required to e_xplqre th_e ph_ase
from the Melnikov-Arnold integral. We examine the averageSPace may be long compared to the numerical iteration time,
of the lowest order integrah,, which occurs inD;, which such that the ergodic assumption is not satisfied. The numeri-

has the largest variation witk, cal difference irK scaling between thd=8, m=4 case and
the N=8, m=8 case may be another manifestation of the
ial properties of the fully coupled maps.
— 1 (= | exd (m/2)(1/KY?)] specia / ! .
=_ To compare our results with those discussed in the Intro-
A= fo AT sinh(1/K17?) a, (12 P

duction[11,12 we first note that we have separated the cou-

pling paramete from the nonlinearity parametét. These
where the integral can be taken to extend over the entirare combined in[11,12. Thus we obtain, theoretically,
phase space. At smallwe expand sinhfl/K*? for small Al K4 or Do u?KY2. For u=K this corresponds to
argument, to obtain an approximate relationship D«K? with y=2.5. For the numerics, taking an approximate
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averageAl ,me< uK, we obtainy=4. Both of these values of diffusion rate was developed, but not fully tested. The theory

v are below the value 0f=4.8 found in[11], with the the- has now been compared to the numerical result¥fe0.8,
oretical result significantly below either numerical result. We0.4, and 0.3, shown in Figs. 2, 3, and 5, respectively. Be-
note that if the numerical results are not truly global, i.e.,cause the phase space areas of the various types of orbits are
ergodic on the phase space, thedependence can be much not well known for theK=0.4 and 0.3 cases the theoretical
stronger, as found in the previous results for local diffusionresults are bracketed, as described in the text. The results
[6]. We can also fit our scalings to the power-law scaling ofindicate reasonable agreement between theory and numerics
the theory in[12], since there is an adjustable parameter inbut the numerical results have a somewhat steeper depen-

that theory that in effect determines the power. dence orK than the theory.
Because the numerical results are very difficult to obtain
IV. CONCLUSIONS AND DISCUSSION for small K, the scaling ofAl s with K, extended to small

K was obtained from the theory. The results, in Fig. 5, indi-
cate a slow power-law decrease in diffusion rate whth
Al K25 This dependence gives a value @< 2K/

Arnold diffusion has been studied N weakly coupled
standard maps in whicln phasean<N appear in the cou-

pling term. The coupled system was sympletailerived  \\nich is much weaker than that found in other studies

from a generating function The rate of diffusion in the 177 12 Although the weak dependence is qualitatively un-
N-dimensional phase space was compared with previous regerstood in terms of the scaling of the dominant terms in the
sults obtained for area preserving but nonsymple€icm  heoretical expression, it is not clear if this behavior is ge-

<N) coupled maps. There appears to be little difference iheric, depends on special properties of the coupling term, or
the diffusion rates of the symplectic and nonsymplectic syStegylts from the ergodic assumption which may not be satis-
tems. The diffusion rates for relatively large can be nor-  fied in numerical studies.

malized by dividing byN'/? such thatN does not explicitly
appear. When this is done, the spread of the actibp,
after a given number of mapping steps and fixing the
mapping parametaf and the coupling parametgr, lies on
separate universal curves Al ,,{m) for m<N and form The work was partially supported by National Science
=N (see Fig. 2 For smalleiK values theN scaling cancels, Foundation Grant No. PHY-9505621. Many of the numerical
as can be explained, theoretically, from phase space arggalculations were done using a program of Dr. B. Wood. H.
ments. Lee performed initial calculations of local diffusion. Conver-
In previous work[6] an analytic formula to predict the sations with Professor M. A. Lieberman have been helpful.
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